AE63+89

COMMERCIAL: IN CONFIDENCE

(39) & (48)

OYKELL MINERALS LTD (ACMIN EXPL N.L.) - PROJECT RRI/IIIA

ROSEHALL - SOUTH KYLE

723/20

SUMMARY

The aim of this project was to define the mineral potential of the Rosehall - South Kyle area. A preliminary assessment of the total mineral field in relation to the outcropping Late Caledonian granites was made.

Outcrop throughout the Rosehall area is generally very poor; a thin peat cover overlies much of the country rock. The area is underlain by southerly dipping Moine paramites with thin bands of pelitic schist and hornblende schist. Northeast trending faults occur near Rosehall and around the Grudie granite but a major northwest trending lineament with associated crush somes occurs along Glen Cassley. The Grudie granite, a Late Caladonian steep-sided adamellite boss intrudes the Moine rocks at Meall a' Gruididh. Minor mineralisation (galena + baryte) has been noted in Grudie Burn on the southeast side of the adamellite (Gallagher, 1970).

In late 1971 Oykell Minerals applied for assistance to the Department of Trade and Industry under the MEIGA scheme to carry out a geological, geochemical and geophysical reconnaissance over the Rosehall area. Robertson Research Int Ltd were commissioned to do the work. Subsequently in early 1972. The South Kyle area was added and a similar application to the Department of Trade and Industry approved.

Several new mineral occurrences (see map for Pb and Ba occurrences) have been found in the course of the work. They are generally located in NE trending fracture somes in which there is evidence of hydrothermal alteration. At the most extensive occurrence, 0.64 km NE of Rosehall, galena and baryte occur in a series of north trending fractures for about 100 m in a NNE trending fracture some. Analysis of drift samples adjacent to this locality revealed anomalous Pb values with locally high Cr and Cu. Minor molybdenite was noted near the Grudie granite and fluorite, pyrite and calcite veins in other localities.

Stream sediment and minor rock chip and auger sampling were carried out over most of the area suitable for collection. Analysis of the results (using AAS and Emission Spectrography) gave the following threshold values-:

РЪ	Cu	Zn	Mo	Sn	Ni
60 ррш	35 ppm	170 ppm	3 ррш	5 ppm	70 ppm
Co	Cr	Ag	v	Ba	Ti
30 ppm	150 ppm	1 ppm	150 ppm	0.15%	1 • 3%

W and Bi were consistently below detection limits. Anomalous values for

Pb and Ba agreed well with the observed mineral localities. Significant Pb, Zn and Cu anomalies were found in several parts of the Rosehall area. No anomalies occur close to the Grudie granite and Ba anomalies were noted at a greater distance.

Geophysical work consisted of a reconnaissance ratemeter and magnetometer survey, and detailed, very low frequency (VLF) and horisontal loop electromagnetic, and total magnetic intensity surveys over restricted sones where mineralisation was thought likely. The reconnaissance revealed no radio-active areas and variations in magnetic readings were not significant. Southwest of Meall a' Gruididh (see map) possible disseminated mineralisation with a vertical orientation is indicated at a depth of 38 m on both grid lines. No conclusive results were obtained from the other two grids.

Robertson Research Int Co recommend further detailed geophysical work on the area west of the Grudie granite particularly using VLF and magnetic methods. Detailed I.P. surveys would also be useful in defining the depth, orientation, grade and extent of mineralisation. If these methods prove successful they should be applied to areas with anomalous stream sampling results.

> J R Mendum Institute of Geological Sciences 19 Grange Terrace Edinburgh EH9 2LF

13 January 1975

FINANCIAL ASSISTANCE FOR MINERAL EXPLORATION (M.E.I.G.A.)

COMPANY :	OYKEL MINERALS	LTD			REF: AE 63
PROJECT:	ROSEHALL				MRD 144/18
The follo and Edinb	wing Open File urgh. Availabl	material is e for public	held by c inspec	B.G.S. in L tion from 4.	ondon, Keyworth 10.78.
- Sect	ion 4 of initia eology by Rober	l applications and the second se	on submi ch Ltd	tted 2.11.71	with 3 statements
- * Repo west 4 en	rt 758, Roberts of the Ghrudie closures:	on Research Granite", I	"Geophy by D.J.	sical survey Patrick. Jul	of an area y'72. With
1	North westerly	VLF-EM prot	files		
2	South westerly	VLF-EM prot	files		
3	Magnetic contour map 1:5,000				
4	Rosehall Geophysical Survey: Geophysical Anomaly Zones 1 : 10,000				
(The	se enclosures a	re extremely	y poor c	opies)	
Repo	rt 735, Roberts	on Research,	, May 19	72	
o	18 pages and 2	3 pages of a	analyses		
o	Geochemical su	rvey key			
o	Fig 1 Boun	daries of su	urvey ar	ea	
o	Fig 2 Geol	ogy and Geog	physical	Traverse li	nes
٥	Fig 5 Summ Cu,	ary of Majon Pb, Zn	r Geochei	n. Anomaly G	roupings
0	Fig 6 Geop	hysical Prof	files al	ong Traverse	1
0	Fig 7	11		18 11	2
o	Fig 8	55	" at	Locality A	
o	Fig 9	"	" at	Localities	В&С
° *	Fig 10 Aero	magnetic map	of the	Grudie area	
9	Enclosures 1 t NC41SW, NC41SE NH49NE, NH59NW	o 10 Geochem , NC40NW, NC , NH59NE	nical san C4ONE, No	npling plans C50NW, NC40S	1:10,560, E, NC50SW,

* Not at Keyworth

AE 63

ROSEHALL.

ROBERTSON RESEARCH COMPANY LIMITED

QUOTATION NO. 649/278

CLIENT: OYKELL MINERALS LIMITED Dowgate Hill House, London EC4R 2SY.

PROJECT: MINERAL SURVEY OF AN AREA BETWEEN STRATH SHIN AND STRATH OYKELL, SUTHERLANDSHIRE

ROZEHALL?

SCOPE: The project will comprise a two stage mineral survey of an area lying between Strath Shin and Strath Oykell and owned by Mr. Graesser. The area is designated 3 on the accompanying map and occupies an estimated 5,050 acres.

> The first stage would be of a reconnaissance nature and be aimed at defining areas on which detailed mineral exploration could justifiably be undertaken. It would involve the following work:

- a. a field geological appraisal of the concession area;
- b. a geochemical stream sediment survey undertaken on a suitable sample interval. Stream sediment samples would be analysed for appropriate elements; these would probably include copper, lead, zinc, molybdenum, manganese and fluorite as appropriate. The analytical results obtained would be interpreted to indicate areas of anomalously high values;
- c. reconnaissance geophysical work would be done at the same time as the stream sediment sampling, and magnetometer and scintillometer readings would be made. This geophysical work would be extended into areas between streams where surface examination of rock was hampered by soil or peat cover;
- d. chip samples of rock would be taken in selected areas for analysis to help locate areas of mineralisation;
- e. shallow drilling of a preliminary nature might be undertaken in areas of soil cover during the first stage, if the results of the geochemical or geophysical work suggested this to be desirable.
- f. the results of the survey would be incorporated in a report which would also give recommendations for the work to be carried out in Stage II of the Project.

The second stage of the project would involve detailed geological, geochemical and geophysical techniques. These techniques would be supplemented as appropriate by shallow drilling on a grid pattern to obtain data in areas of soil or peat cover. In addition, deeper drilling would be carried out on any ore bodies discovered, the programme being aimed at the assessment of ore reserves and grade and the determination of the viability of any particular ore deposit.

TY'N-Y-COED' LLANRHOS LLANDUDNO NORTH WALES TELEPHONE DEGANWY 81811 CABLES RESEARCH LLANDUDNO TELEX 61216

ROBERTSON RESEARCH COMI

DIRECTORS: DR W. F. ROBERTSON J. C. ROBERTSON, D.I. DR. R. H. CUMMINGS DR. W. W. BROWN

GEOLOGICAL SUMMARY OF THE AREA FOR OYKELL MINERAL'S GRANT APPLICATION

Forestry Land North of Strath Oykell (Area 2)

The area occupies some 7,850 acres and is predominantly underlain by rocks forming part of the Moine metamorphic series. Main rock types present are flaggy quartz granulites, and metamorphosed pelitic rocks such as muscovite and biotite schists with occasional hornblende schists. Quartz veining and brecciation along faults also occur within the area. Much of the area is covered by peat and/or glacial drift.

The regional strike is cast northeast-west southwest with dips predominantly to the south or south southeast ranging from 35 to vertical in places. Two major fold patterns are recognisable in the region, one striking NNE-SSW and a second fold system is developed at right angles.

Old Parish records record the former working of iron and manganese in the Rosehall area.

The area involved is illustrated on the accompanying map.

REDUCED SCALE

ROSEHALL

*TY'N-Y-COED' LLANRHOS LLANDUDNO NORTH WALES TELEPHONE DEGANWY \$1811 CABLES RESEARCH LLANDUDNO TELEX 61216

ROBERTSON RESEARCH COMPANY LIMITED

DIRECTORS: DR. W. F. ROBERTSON J. C. ROBERTSON, D.L. DR. R. H. CUMMINGS DR. W. W. BROWN

GEOLOGICAL SUMMARY OF THE A OYKELL MINERAL'S GRANT APPL

Forestry Land South of Strath Oykell (Area 4)

An area occupying come in, no acres south of the Oykell River at the west of Invershin is underlain predominantly by Moinian sil granulites. The regional strike is ENE-SSW and the dip predominantly to the south. A large portion of the area is covered by peat and/or glacial drift.

Lamprophyre dykes cut the granulites as do small dykes of hybrid composition (granite/scyclitic). Small outcrops of hornblende schist, epidiorite and amphibolite occur whilst a larger area of pelitic schist occurs in the extreme west of the region. Veins of granitic material are infrequently recorded.

The area involved is illustrated on the accompanying map.

ROBERTSON RESEARCH COMPANY LIMITED

QUOTATION NO. 649/313

<u>CLIENT:</u>	OYKEL MINERALS LIMITED c/o Acmin Explorations No Liability, Level 20, Norwich House, 6-10 O'Connel Street, Sydney, New South Wales 2000, Australia.
PROJECT:	FURTHER GEOLOGICAL AND GEOCHEMICAL INVESTIGATIONS
SCOPE:	Preliminary results on mineral exploration in areas 2 and 3 at Rosehall (as contained in our Quotations 649/278 and 649/279) and published information on the possible mineralisation of adjacent areas, have shown that additional work is necessary to delimit the extent of the mineralisation in the Rosehall area. It is proposed that this work should be completed as part of Phase I of the Rosehall Survey. It would involve :
	a. determining the northerly and easterly extensions of the Glen Cassley anomalies
	b. determining the westerly and northerly extensions of the geochemical anomalies west of Glen Cassley
	c. tracing the extent of geochemical anomalies into area 4, south of the Oykell river.
	The work would be undertaken by stream sediment geochemistry, possibly with some soil and rock chip sampling. All samples collected would be analysed by atomic absorbtion methods for copper, lead and zinc. Geological prospecting would also be undertaken.

'TY'N-Y-COED' LLANRHOS LLANDUDNO NORTH WALES

TELEPHONE DEGANWY 81811 CABLES RESEARCH LLANDUDNO TELEX 61218

ROBERTSON RESEARCH COMPANY LIMITED.

DIRECTORS: DR. W. F. ROBERTSON J. C. ROBERTSON, D.L. DR. R. H. CUMMINGS DR. W. W. BROWN

GEOLOGICAL SUMMARY OF THE AREA FOR OYKELL MINERAL'S GRANT APPLICATION

Mr. Graesser's Land (Area 3)

The area occupies some 5,050 acres and is predominantly underlain by rocks forming part of the Moine metamorphic series. Main rock types present are flaggy quartz granulites, and metamorphosed pelitic rocks such as muscovite and biotite schists with occasional hornblende schists. Quartz veining and brecciation along faults also occur within the area. Much of the area is covered by peat and/or glacial drift.

The regional strike is east northeast-west southwest with dips predominantly to the south or south southeast ranging from 35 to vertical in places. Two major fold patterns are recognisable in the region, one striking NNE-SSW and a second fold system is developed at right angles.

Old Parish records record the fomer working of iron and manganese in the Rosehall area.

The area involved is illustrated on the accompanying map.

3. The second stage of the project would involve detailed geological, geochemical and geophysical techniques. These techniques would be supplemented as appropriate by shallow drilling on a grid pattern to obtain data in areas of soil or peat cover. In addition, deeper drilling would be carried out on any ore bodies discovered, the programme being aimed at the assessment of ore reserves and grade and the determination of the viability of any particular ore deposit.

ROBERTSON RESEARCH COMPANY LIMITED

QUOTATION NO. 649/279

CLIENT: OYKELL MINERALS LIMITED Dowgate Hill House, London EC4R 2SY.

PROJECT: MINERAL SURVEY OF AN AREA BETWEEN STRATH SHIN AND STRATH OYKELL, SUTHERLANDSHIRE

- **SCOPE:** I. The project will comprise a two stage mineral survey of an area lying between Strath Shin and Strath Oykell and owned by the Forestry Commission. It is designated 2 on the accompanying map and occupies an estimated 7850 acres.
 - 2. The first stage would be of a reconnaissance nature and be aimed at defining areas on which detailed mineral exploration could justifiably be undertaken. It would involve the following work:
 - a. a field geological appraisal of the concession area;
 - b. a geochemical stream sediment survey undertaken on a suitable sample interval. Stream sediment samples would be analysed for appropriate elements; these would probably include copper, lead, zinc, molybdenum, manganese and fluorite as appropriate. The analytical results obtained would be interpreted to indicate areas of anomalously high values;
 - c. reconnaissance geophysical work would be done at the same time as the stream sediment sampling, and magnetometer and scintillometer readings would be made. This geophysical work would be extended into areas between streams where surface examination of rock was hampered by soil or peat cover;
 - d. chip samples of rock would be taken in selected areas for analysis to help locate areas of mineralisation;
 - e. shallow drilling of a preliminary nature might be undertaken in areas of soil cover during the first stage, if the results of the geochemical or geophysical work suggested this to be desirable.
 - f. the results of the survey would be incorporated in a report which would also give recommendations for the work to be carried out in Stage II of the Project.

GEOPHYSICAL PROFILES ALONG TRAVERSE 2

FIGURE 7

GEOPHYSICAL PROFILES AT LOCALITY A

GEOPHYSICAL PROFILES AT LOCALITIES B & C, AND ACROSS THE GRUDIE GRANITE MARGIN

ROBERTSON RESEARCH INTERNATIONAL LIMITED

REPORT NO. 735

RECONNAISSANCE MINERAL SURVEY OF THE ROSEHALL AREA, NORTHERN SCOTLAND

by

D. W. MATTHEWS, M.A., Ph.D., F.G.S., A.M.I.M.M. P. IBBOTSON, Ph.D., D.I.C., B.Sc., A.R.C.S., F.C.S., A.M.I.M.M. D. PATRICK, Ph.D., B.Sc., F.G.S.

Project No. RRI/IIIA/723/20

.

May, 1972

Prepared for :

Oykell Minerals Limited, G.P.O. Box 4817, Sydney, New South Wales 2001, AUSTRALIA.

CONTENTS

I	INTRODUCTION	1
II	GEOLOGICAL APPRAISAL	2
111	GEOCHEMICAL RECONNAISSANCE	7
IV	GEOPHYSICAL RECONNAISSANCE	10
v	DISCUSSION OF RESULTS	12
VI	CONCLUSIONS AND RECOMMENDATIONS	16
VII	SELECTED REFERENCES	18
11 111 1V V V1 V11	GEOLOGICAL APPRAISAL GEOCHEMICAL RECONNAISSANCE GEOPHYSICAL RECONNAISSANCE DISCUSSION OF RESULTS CONCLUSIONS AND RECOMMENDATIONS SELECTED REFERENCES	7 1C 12 16 18

- APPENDIX 1 Results of geochemical analyses of stream sediment, rock chip and auger samples for copper, lead and zinc.
- APPENDIX 2 Results of geochemical analyses of selected stream sediment samples for 12 elements.

TEXT FIGURES

- Figure 1 Approximate boundaries of the survey areas and key to 1:10,000 scale sheet numbers.
- Figure 2 Geological boundaries and localities, and geophysical traverse lines.
- Figure 3 Detail sketch map of locality A.
- Figure 4 Geochemical sampling in Allt Dail Faid
- Figure 5 Summary of major geochemical anomaly groupings in copper, lead and zinc.
- Figure 6 Geophysical profiles along traverse 1.
- Figure 7 Geophysical profiles along traverse 2.
- Figure 8 Geophysical profiles at locality A.

Figure 9 Geophysical profiles at localities B and C, and across Grudie granite margin.

Figure 10 Aeromagnetic map of the Grudie area.

ENCLOSURES

1-10 Rosehall Geochemical Survey; 1:10,000 scale.

INTRODUCTION

A reconnaissance mineral survey of the Strath Oykel area of southern Sutherland, Scotland, was undertaken for Oykel Minerals Limited. Initially work was commissioned on the areas numbered 2 and 3 on Figure 1. As initial results were promising, the sample density was increased and the survey was also extended to the western part of area 4. Some trial geophysics was carried out to test the applicability of various methods to the Rosehall environment and type of mineralisation.

Subsequently the remaining parts of area 4 and Glen Rossal and Glen Cassley estates were surveyed. Access for stream sediment sampling only was arranged on these two estates, but similar arrangements could not be made for Sallachy or Ben More estates on which some geochemical interest is indicated.

The work covered by this report represents Phase I of an appraisal of the mineral potential at Rosehall, and was designed to locate target areas for detailed investigations.

Recommendations are given for further studies in the area based on the results obtained from the work to date.

- 1 -

GEOLOGICAL APPRAISAL

Geological investigations at Rosehall are hampered by the almost total lack of exposure. Much of the higher ground is covered by glacial till and thin (less than 2m) but extensive wet peat. The lower ground on the valley sides is covered largely by dense reafforestation. Good exposures occur locally in some stream cuttings, but the overall percentage outcrop is less than 1%. This factor will be the major problem facing further more detailed mineral exploration.

Only a few rock types crop out in the Oykel area. Almost all the area is underlain by Precambrian Moine metasediments, which in central northern Scotland consist of lithologically uniform psammitic schists with occasional thin bands of pelitic schist and sheets of basic hornblende schist. The psammites are chiefly quartz rocks with a little feldspar and muscovite, whilst the pelites are muscovite-biotite-quartz rocks with a little feldspar. The basic schists have been observed at only two places near Rosehall, but in this part of Scotland they generally occur as concordant sheets within the psammites; they consist almost entirely of hornblende with accessary feldspar and quartz.

The Moine schists were extensively metamorphosed and folded during the Caledonian orogeny, and now generally dip south at 35° to 90°. Local variations in attitude result from small scale folding. Some faulting and brecciation and also quartz veining probably of late Caledonian age are seen in places. The poor exposure at Rosehall does not permit detailed description of structures within the area.

Regionally, however, the major folding is generally isoclinal with a west-northwest strike and axial plane dip to the south-southwest. The faulting apparently tends to strike northeasterly near Rosehall, but no

II

- 2 -

such regularity has been observed in the Cassley area. Quartz-feldspar veins and segregations vary from perfectly concordant lenses to cross-cutting veins perpendicular to the schistosity. Possibly some major northwesterly trending topographic lineations also have structural significance, Glen Cassley being the best example. Crush zones occur on the east side of Glen Cassley, and particularly between Glen Shiela and Glen Rossal, and consist of brecciated psammite with a siliceous matrix. These may have exerted some control on the topography. They do not, however, contain any evidence of metalliferous mineralisation. In general quartz veins and quartz-rich breccias near Rosehall are totally devoid of mineralisation and are probably a late stage metamorphic phenomenon pre-dating the hydrothermal mineralisation.

A small granite mass intruded into the Moine schists at Meall a'Ghruididh (Grudie Hill), is apparently a steep sided boss. Exposure is poor, but the granite margin mapped on indirect evidence, is shown on Figure 2. Petrographically, the rock is an adamellite consisting of feldspar and quartz with only small amounts of biotite and muscovite, with accessary fluorite, sphene, zircon, apatite and opaque minerals. It is characterised by abundant rounded 'phenocrysts' of quartz and is conspicuously microlitic in places. The shape of the Grudie granite mass and its relation to the nearby Lairg granite are debatable. One author (Newman, 1971) suggested that the Grudie granite is the exposed part of a western continuation of the Lairg granite. In this report the Grudie granite is regarded as one of several 'Newer' or late Caledonian granite masses in this part of northeast Scotland. It is petrographically quite distinct from the nearby Lairg granodiorite.

Published records of mineralisation in the Lairg area are numerous, the latest and most detailed describing a study of part of the Grudie Burn and the southeast part of the Grudie granite (locality X on Figure 2) by the Institute of Geological Sciences. However, all these records pertain to occurrences outside the present survey area. The following mineral occurrences

- 3 -

are apparently all new discoveries. They contribute significantly to the knowledge of the mineralisation of the whole region.

Locality A

This, the most extensive mineral occurrence in the area, is exposed for about 100 metres in a stream channel part of which is a deep rocky gorge (Figure 3). The stream follows a northeasterly trending fault zone, but upstream and downstream the stream curves away and the fault probably dies The lower half of the gorge contains intermittent exposures of out. brecciated but unaltered schists with a little barytes, calcite, quartz and sporadic galena. This breccia widens to approximately 1 metre towards point (i) on Figure 3. At point (i), the stream forms a small loop, the narrow neck of which is occupied by brecciated, mylonitised and hydrothermally altered schists, which contain minute specks of pyrite, sericite, clay minerals and epidote. The vein thins rapidly northwards from 2 metres to 0.5 metres. Further upstream near the bridge, hard breccia with galena and barytes crops out, and under the bridge, two very narrow veinlets carry barytes, calcite and an estimated 2-5% galena. Just upstream from the bridge an irregular zone of broken and brecciated schists is 3 metres wide and veined and impregnated with barytes and stringers of galena. The zone apparently thins rapidly or is displaced by a fracture in the stream bed. It continues on the opposite bank, is less than 10 cms wide and contains barytes and galena with a lttle calcite and quartz. An adjacent vein has a similar mineralogy. Upstream, another vein is up to 5 cms wide and 3 metres long; it contains barytes and up to 10% galena. These small veins have the appearance of tension gashes and are associated with only minor brecciation of the otherwise unaltered schists.

Locality B

Here, mineralisation occurs in erratic blocks, one being strongly

- 4 -

Colcite 8 Goleno

Barytes , Galena B. Calcite

Grid North

brecciated schist with approximately 50% of coarsely disseminated galena. Another erratic is silicified and contains abundant pyrite.

Locality C

This isolated occurrence of slightly brecciated and altered schist occurs as a thin (20 cms) vertical band striking north-eastwards for approximately 5 metres in a stream channel. The schists contain scarce disseminated flakes of molybdenite and pyrite, and a coating of specular hematite on some joint surfaces.

Locality D

Downstream from locality C, the schist has a generally altered appearance. A set of well developed rectangular joint planes, particularly those striking northeast, are widened to approximately 1 cm and filled with crystalline barytes. This exposure is approximately 3 metres long.

Locality E

Downstream from locality D a single exposure of a massive vein 1 metre wide, dips almost vertically westwards. It consists of barytes and calcite with traces of hematite staining but with no visible sulphides. The wallrock schists are not brecciated, but are conspicuously altered over a width of approximately 10 cms with development of epidote and sericite, and the breakdown of feldspar.

Locality F

This very small isolated occurrence is situated in a small stream cutting. It consists of a very narrow (approximately 5 cms) zone of crushing and brecciation in typical psammitic schists, and contains purple fluorite and a little quartz and calcite.

- 5 -

Locality G

The gorge of the Allt Mor river follows a major northeasterly fracture zone and contains numerous veins. In general, however, the upper part of the gorge shows less evidence of fracturing than the lower half and is dominated by barren calcite veins with red hematite staining. At locality G pyrite forms up to 50% of the lenses and veins in which it occurs. Also thin fractures trending slightly west of north are filled with propylitised material.

Locality H

Lower down the Allt Mor gorge, brecciation and shattering of the schist becomes more pronounced and locally forms a 25 metre wide zone. Within this zone, lenses of black hematite are common, and hematite and other oxides also form a matrix material in the breccia. Calcite is present sporadically, and some pure calcite veins also occur. At locality H, a single lens of iron and manganese oxides is 15 cms thick and nearly 2 metres long.

In general, this reconnaissance survey has revealed three new areas of sulphide mineralisation, one of oxide mineralisation, and a number of other features of interest scattered over nearly 20 square kilometres. Each individual occurrence is associated with fracturing, but no overall fracture pattern can be postulated at this stage. Hydrothermal activity is clearly associated with the mineralisation at some localities although in the Allt Mor section there is a change from sulphide to oxide mineralisation in two miles of the gorge length. With so little wallrock alteration, the veins were probably emplaced at relatively low temperatures. Alternatively the veins may be exposed at a comparatively high structural level in relation to the source of the hydrothermal solutions. A larger vein system may still be buried. The occurrences, and the genesis of the molybdenite in related to any vein occurrences, and the genesis of the molybdenite in relation to that of galena and barytes remains uncertain.

- 6 -

GEOCHEMICAL RECONNAISSANCE

Stream sediment sampling was undertaken on the second and third order streams which drain much of the area although some large tracts of higher ground have no channeled drainage. All accessible stream confluences were sampled and intermediate samples were taken at 200 to 400 metre intervals depending on the abundance of sediment. In some places, particularly the upper reaches of the Grudie Burn, sediment is generally scarce because the streams run entirely in peat. This has reduced the sample coverage substantially.

The samples, usually of active sediment, were dried, rolled, and sieved to -80 mesh. Half of the -80 fraction was used in analysis for Cu, Pb and Zn by atomic absorption methods; the other half was crushed to -200 mesh and retained for possible analysis by emission spectrography for molybdenum (Mo), tungsten (W), tin (Sn), nickel (Ni), cobalt (Co), chromium (Cr), silver (Ag), bismuth (Bi), vanadium (V), barium (Ba), manganese (Mn), and titanium (Ti). Only those samples from areas 2 and 3 with high levels of Zn were in fact analysed spectrographically for the other elements. All the analytical results are tabulated in Appendices 1 and 2.

The interpretation of the Cu, Pb and Zn values has been done by statistical methods. There is little lithological variation within the area and distribution curves for all values for each element were found to be essentially unimodal. Mean values and standard deviations were calculated after elimination of the extremely high values which normally form about 5% of the total. The interpretation was based on a threshold value for possibly anomalous samples at mean plus two standard deviations and probably anomalous values of mean plus three standard deviations. The values thus obtained are given as follows :

III

- 7 -

	Threshold Values	Probably Anomalous Values
Lead	60 ppm	≥75 ppm
Copper	35 ppm	≥ 45 ppm
Zinc	170 ppm	≽200 ppm

The sample values are plotted as background, possibly anomalous and probably anomalous categories on Enclosures 1-10. The results of sampling in Allt. Dail Faid are shown on Figure 4.

Because only samples from areas 2 and 3 with Zn levels >150 ppm were spectrographically analysed, a statistical treatment of the spectrographic results would be invalid. The threshold values have therefore been derived from subjective treatment of the data and from our overall experience of geochemical reconnaissance in Scotland. Possibly anomalous values have been plotted on the enclosures. Probably anomalous values have been distinguished for Mo and Sn only. These values are as follows :

	Threshold Values	Probably Anomalous Values
Molybdenum	3 ppm	≽20 ppm
Tin	5 ppm	≽50 ppm
Nickel	70 ppm	
Cobalt	30 ppm	
Chromium	150 ppm	
Silver	1 ppm	
Vanadium	150 ppm	
Barium	.0.15%	
Manganese	1.07.	
Titanium	1.3%	

For Legend refer to Enclosures I-IO

FIGURE 4

Tungsten and bismuth values were consistently below the analytical detection limits of 50 and 5 ppm respectively. A consideration of all the geochemical results is contained in Chapter V, and the main anomalous areas are shown on Figure 5.

In order to assess the possible occurrence of disseminated metallic minerals in the psammitic schists, some rock chip sampling was carried out in areas of relatively good exposure west of the Grudie granite. However, exposure was still too poor to allow regular grid sampling. Sample locations are given on the enclosures, and analytical results are listed in Appendix 1. These results only show high values in the vicinity of locality A described in Section II.

Investigations were also made on hand-augered samples of drift from beneath the peat. The samples were obtained near certain veins and around the supposed margin of the Grudie granite. The sample points are shown on the enclosures. All the samples were taken from the surface of the glacial drift. Geochemical analyses of their -80 mesh content are given in Appendix 1. Applying the threshold values previously described, one sample from near the Grudie granite (sample 19715) has possibly anomalous lead, and one sample (19704) has probably anomalous copper. Two samples with possibly anomalous lead values (19721, 19722), one with a probably anomalous lead value (19732) and one with a probably anomalous copper value (19731) were taken in the vicinity of locality A, described in Section II. Sample 19761 was taken near the stream adjacent to Allt a'Choire and contains a possibly anomalous copper value. This supports the probably anomalous copper values noted in sediment samples from the stream. Drift sampling could probably be applied usefully to other parts of the survey area.

GEOPHYSICAL RECONNAISSANCE

Geophysical work was carried out in two separate stages. Firstly, a ratemeter and a Minimag vertical field magnetometer were carried on all initial stream sample lines and on some intermediate traverses for chip samples. Readings were taken at sample points and at some intermediate stations. Ratemeter readings were uniformly very low at less than 5 μ R/hour even over the granite, and the magnetometer readings showed only random variations of up to 500 gamma which were not considered significant apart from confirming the absence of any very intense magnetic anomalies in the survey area.

Secondly, traverses made in selected areas aimed at testing the applicability of three geophysical methods to this type of mineralisation and environment, and at obtaining some idea of the order of magnitude of anomalies that might be detected. Very low frequency (VLF) and horizontal loop electromagnetic methods and total magnetic field intensity measurement were used.

The traverse lines are located on Figure 2 and profiles of these traverses for each method used are shown on Figures 6 to 9. The results on traverses 1 and 2 show that small anomalies can be repeated using the various methods and that there is correlation between geological and geochemical and geophysical interest. No significant anomalies were detected across the granite contact using the VLF method, or across the molybdenite mineralisation at locality C. A possible magnetic anomaly (but no reliable electromagnetic anomaly) was encountered at locality A.

Calculations from the magnitude of these anomalies indicate that on traverse 1, a conductor, probably disseminated with a conductivity of 4-11 mhos and vertical orientation is indicated at approximately 130 feet

IV

- 10 -

below ground level. This calculation is based on the horizontal loop results and is partly supported by the VLF data though the latter may be partly affected by the wet peat cover. On traverse 2, a similar interpretation gives a depth of 120 feet to the top of a conductor but the VLF profile is more clearly affected by overburden than in traverse 1. On other traverses, small VLF effects are probably due to surface slope and overburden, but would merit checking in a larger scale survey, particularly that a locality A. These results are discussed further in Chapter V.

Figure 10 shows air magnetic data over the Rosehall area as published by the Institute of Geological Sciences on a quarter inch scale. Superficially, the Grudie granite is represented as a circular mass with a northeasterly prolongation. The northwesterly striking Cassley feature is also very evident. A detailed interpretation of these data has not been made, but the air magnetic results could yield results relevant to further work in the Rosehall area.

DISCUSSION OF RESULTS

1. Geological Results

Seven new mineral occurrences have been located, and galena and pyrite also occur in some transported material. Since exposure is poor, the frequency of observed mineralisation is very encouraging.

The character of the mineralisation varies with locality. Galena is present as a major constituent at one locality, pyrite at one, molybdenite at one, fluorite at one, barytes at two, hematite at two and calcite at several. Molybdenite and fluorite each exist alone, but the other minerals occur in various assemblages.

The mineralisation is usually located in northeasterly striking fractures or fracture zones within the psammites, both as veins and as disseminations in fractured and brecciated schist. The schists are patchily hydrothermally altered, even in some apparently un-mineralised areas.

In general, these observations endorse published theories on the origin of similar mineral deposits in Northern Scotland. The veins are fracture controlled, and probably related to the emplacement of a late Caledonian granite. The mineralisation is hydrothermal and sulphide-bearing in character, although oxides are present at some localities. Possibly the level of exposure is structurally 'high', and mineral deposition may be more intense at deeper levels. Near Rosehall vein structures crop out approximately three miles from exposed granite but no mineral occurrences are exposed on or very near the western margin of the Grudie granite; however, a drift auger sample with a possibly anomalous lead content was taken from the northwestern margin and one with a probably anomalous copper content was taken from the southern margin. The latter also has a much higher than average background level of zinc and anomalous chromium. The few exposures indicate a general tendency for oxides to be found further from the granite and at lower topographic levels than the sulphide, but this is presently inconclusive.

V

2. Geochemical Results

The interpretation of the geochemical results is based on generally accepted statistical methods, though the threshold values obtained for copper, lead and zinc can be varied slightly according to the percentage of high values eliminated from the calculations. Since there is apparently little variation in the bedrock schists, the threshold values calculated on a regional basis appear valid for the whole survey area. The results of detailed sampling along anomalous streams suggest also that dispersion of the various metal concentrations is very limited, perhaps less than 0.5 km with the possible exception of zinc. On the basis of the threshold values used, groupings of anomalies in lead and zinc and to a lesser extent copper are conspicuous (Figure 5) and most of these groupings are considered geologically significant. Other samples with anomalous values are widely scattered and considered 'non-significant' on the present evidence. The zinc anomalies near Tullich may result from contamination from the surrounding farmland and houses, though high barium values also occur in this area. The three groupings in area 4, two of which are small and isolated and are in recently ploughed forestry land, are probably non-significant.

The spectrographic analyses indicate very conspicuous groupings of molybdenum anomalies at Caillaich, Grudie, Larmachan and Gorge (Figure 5). At these localities, which are close to the Grudie granite, zinc anomalies sometimes with lead or copper exist. A few anomalous cobalt, nickel, chromium and manganese values are also associated with anomalous levels of molybdenum. At Grudie, Achness, Allt Mor and Tullich anomalous barium levels occur further from the Grudie granite than the molybdenum anomalies. The Chatha lead-zinc anomaly is supported only by manganese. Isolated tin anomalies are near roads and habitation and are probably contaminated.

The effect of manganese on the concentration of other metals in stream sediments has been the subject of much published study, and the combination

1 2

of a peaty environment and the many high manganese values obtained in this survey throws suspicion on the significance of some anomaly groupings. On the whole, however, the association between manganese and other metal anomalies is inconsistent, and with the possible exception of the Chatha anomaly, manganese 'scavenging' is not reckoned to be of major importance.

The manganese anomalies may in fact be due to the presence of oxides of iron and manganese similar to the Allt Mor occurrences. Similarly the cobalt, nickel and chromium anomalies may reflect the presence of basic schists.

The copper, lead and zinc results on Glen Cassley show two areas which merit further investigation. In the Loch Shiela area there are also anomalies in copper, lead and zinc, and further north scattered but high levels in zinc occur. The actual levels cannot be compared too closely with those of Newman (1971) because of improved standards of analysis, but the general distribution of possibly and probably anomalous samples is reasonably comparable with published work and confirms the east side of Glen Cassley as an important area of interest. Mineralisation has not been seen in Glen Cassley even though exposure is better than near Rosehall, but probably any mineralisation in Cassley would be an extension of the Grudie mineralisation.

Analysis of drift samples from near locality A revealed two with possibly anomalous values of lead, one with probably anomalous lead and chromium values and one with probably anomalous copper. One possibly anomalous lead value is supported by anomalous values of chromium, cobalt and vanadium; this may be the result of contamination from the nearby forestry track. On balance though, contamination is not considered a major factor here and the samples may indicate possible extensions to the known mineralisation.

Rock chip samples from the vein breccia of locality A contain high lead values, and a chip sample from unaltered psammite exposed upstream of

- 14 -

locality A has a moderately high copper content; the latter strengthens the possibility of the extension of known mineralisation.

The geochemical results indicate several areas of metal potential in the Rosehall area. Molybdenum and less abundant copper anomalies occur close to the Grudie granite and barium anomalies further away. There is also an indication that the anomalies lie on northeasterly trending zones across the area; the same zones also contain the exposures of mineralisation, and have the same orientation as the regional fracture system. In the Glen Cassley area, however, the anomalies equally could have the northwesterly trend suggested in published work.

3. <u>Geophysical Results</u>

The geophysical traverses were very limited and were not designed to give major evidence to aid interpretation of the mineralisation of this area. Some conclusions are, however, possible :

a. Both traverses 1 and 2 show horizontal loop anomalies over a position which could lie on a continuation of the Allt Mor fracture zone. These anomalies would theoretically be consistent with the presence of conductive bodies at depths of 120 to 130 feet. A very small and more uncertain magnetic anomaly occurs at the same points. Both VLF and horizontal loop methods show anomalies at various points on other traverses, but these are not particularly conspicuous. They are possibly partly due to superficial phenomena such as ground slope and waterlogged peat. They cannot therefore be considered important until investigated in more detail.

- 15 -
CONCLUSIONS AND RECOMMENDATIONS

Reconnaissance geological, geochemical and geophysical investigations in the Rosehall area have revealed an extensive tract of mineralised ground. It appears that low temperature hydrothermal vein type mineralisation, predominantly of a lead-zinc-barium nature but in some places associated with copper and fluorite, may occur in northeasterly trending zones between Rosehall and Grudie Hill. Disseminated molybdenite has also been noted near one of these zones. In the Glen Cassley area mineralisation could have a northwesterly control. The mineralisation which is contained in Moine psammitic schists is assumed to be related to the emplacement of the late Caledonian Grudie granite.

Where observed, the veins are generally thin and discontinuous though in one or two places the mineralised structures may be a few metres wide. Commonly there is no wall rock alteration, though an epidote assemblage has been identified in a few places. Locally, rocks that are hydrothermally altered but barren of sulphides crop out.

Evaluation of the mineral potential of the area requires further investigation to ascertain whether the zones of mineralisation are continuous, and what their width and sulphide content is both laterally and in depth. It is recommended that this potential is evaluated in the following ways:

- Geophysical traverses utilising VLF and magnetic methods should be undertaken over the area west of the Grudie granite. The grid used should be 500 x 25 metres with fill-in traverses where necessary.
- 2. Concurrently with 1 above, a detailed interpretation of available air magnetic data should be undertaken to extract all pertinent data which could include information on the subsurface form of

VI

- 16 -

the granite mass as well as important regional features.

- If the results of 1 and 2 above prove satisfactory, geophysical investigations should be extended over the entire mineralised area and possibly some geochemical fill-in traverses conducted in the Cassley zone. The important geophysical anomalies should be drilled to the relevant target depth indicated by the geophysical investigations.
- . As comparable mineralisation is recorded east of the Grudie granite and in areas to the southeast of Lairg, consideration should be given to extending reconnaissance investigations into these regions.

SELECTED REFERENCES

- GALLAGHER, M.J., MICHIE, V. McL, SMITH, R.T., and HAYNES, L., 1971. New evidence of uranium and other mineralisation in Scotland. Trans. I.M.M. <u>80</u> pp. B150-173.
- GALLAGHER, M.J., 1970. Galena-fluorite mineralisation near Lairg, Sutherland. Trans. I.M.M. <u>79</u> pp. B182-4.
- NEWMAN, D., 1971. Recent developments in mineral exploration in the northwest Highlands and Islands of Scotland. Trans. I.M.M. <u>80</u> pp. B276-288.
- PLANT, J., 1971. Orientation studies on stream sediment sampling for a regional geochemical survey in northern Scotland. Trans. I.M.M. <u>80</u> pp. B324-344.
- READ, H.H., PHEMISTER, J. and ROSS, G., 1926. The geology of Strath Oykel and lower Loch Shin. Explanation of sheet 102. Mem. Geol. Surv. Scotland.

APPENDIX 1

ANALYSES OF S	TREAM	SEDIMENT.	ROCK	CHIP	AND	AUGER	SAMPLES
---------------	-------	-----------	------	------	-----	-------	---------

	Sample No.	Cu ppm	Pb ppm	Zn ppm
1.	Stream Sediment Sampl	es		
	19,100	15	60	90
	19,101	15	40	90
	19,102	10	70	65
	19,103	15	40	110
	19,104	20	<20	100
	19,105	< 10	<20	70
	19,106	<10	<20	20
	19,107	< 10	20	25
	19,108	< 10	60	130
	19,109	< 10	<20	65
	19,110	< 10	30	25
	19,111	< 10	<20	30
	19,112	< 10	<20	50
	19,113	≤10	30	110
	19,114	≤ 10	20	60
	19,115	30	<20	45
	19,116	10	₹20	100
	19,117	15	30	120
	19,118	< 10	20	30
	19,119	15	30	120
	19,120	10	20	70
	19,121	10	30	80
	19,122	10	20	65
	19,123	30	20	70
	19,124	30	30	85
	19,125	10 60	~20	120
	19,120	65	50	120
	19 128	60	30	100
	19,129	60	20	350
	19,130	15	30	210
	19,131	10	20	170
	19,132	20	20	130
	19,133	10	<20	210
	19,134	10	<20	75
	19,150	10	<20	20
	19,151	< 10	⊲20	15
	19,152	< 10	<20	25
	19,153 -	< 10	20	65
	19,154	< 10	30	60
	19,155	< 10	30	40
	19,156	< 10	20	40
	19,157	≺ 10	30	45
	19,158	< 10	50	40
	19,159	∢ 10	20	20
	19,160	∢ 10	30	35

Sample No.	Cu ppm	Pb ppm	Zn ppm	
19,161	< 10	30	50	
19,162	20	20	45	
19,163	10	< 20	50	
19,164	10	≤20	140	
19,165	<10	≤20	80	
19,166	≤10	≤20	75	
19,167	≤10	20	30	
19,168	≤10	≤20	410·	
19,750	20	50	120	
19,751	INSUFFICI	ENT SAMPLE		
19,752	INSUFFICI	ENT SAMPLE		
19,753	10	40	90	
19,754	20	≤20	130	
19,755	20	₹20	130	
19,756	15	20	110	
19,757	20	30	190	

Samples 19758 to 19763 inclusive are detailed later under Auger samples

19,764	15	60	120
19,765	10	40	170
19,766	15	30	140
19,767	10	20	2 40
19,768	10	30	75
19,769	< 10	20	60
19,770	10	20	60
19,771	10	20	50
19,772	<10	20	45
19,773	10	30	50
19,774	10	20	65
19,775	. <10	30	65
19,776	<10	20	55
19,777	10	20	40
19,778	10	30	70
19,779	15	≮20	45
19,780	15	20	50
19,781	10	30	45
19,782	10	≮20	150
19,783	20	20	400
19,784	20	20	· 90
19,785	15	< 20	180
19,786	15	≮ 20	65
19,787	20	< <u>20</u>	90
19,788	150	20	140
19,789	15	₹20	50
19,790	10	< 20	50
19,791	15	110	60
19,792	10	120	50

Sample No.	Cu ppm	Pb ppm	Zn ppm
10 702	10	20	75
19,793	10	20	/5
19,794	15	30	45
19,795	10	20	00 55
19,790	10	-1 20	55
19,797	10	< 20 20	40
19,798	√ 10	20	65
19,799	10	< 20 d 00	45
19,800	10	≤ 20	70
19,801	15	30	95
19,802	15	≤ 20	55
19,803	15	< 20	/5
19,804	15	< 20 1 20	90
19,805	15	< 20 20	35
19,806	20	20	50
19,807	10	≤ 20	60
19,808	15	≤ 20	75
19,809	20	30	45
19,810	15	20	45
19,811	15	20	/0
19,812	20	30	85
19,813	20	20	/5
19,814	15	20	60
19,815	10	20	70
19,816	20	≤ 20	85
19,817	15	20	80
19,818	15	< 20 <	60
19,819	15	20	65
19,820	15	30	70
19,821	20	≤ 20	85
19,822	10	20	70
19,823	20	< 20	65
19,824	20	≤ 20	65
19,825	15	< 20	60
19,826	15	< 20	45
19,827	15	< 20	50
19,828	15	≤ 20	130
19,829	15	30	120
19,830	15	< 20	170
19,831	20	₹ 20	120
19,832	20	₹ 20	80
19,833	15	₹ 20	75
19,834	20	20	70
19,835	< 10	30	160
19,836	< 10	20	110
19,837	< 10	40	190
19,838	< 10	30	120
19,839	< 10	30	110
19,843	≤ 10	30	160
19,844	10	60	160

Sample No.	Cu ppm	Pb ppm	Zn ppm
19,845	20	60	110
19,846	25	50	80
19,847	10	40	60
19,848	10	20	. 30
19,849	20	30	25
19,850	< 10	30	65
19.851	15	30	95
19,852	< 10	30	90
19,853	< 10	40	300
19,854	< 10	40	100
19,855	20	30	95
19,856	15	20	60
19.857	10	₹20	60
19,858	20	40	170
19,859	15	30	100
19,860	< 10	20	50
19,861	35	80	180
19,862	10	20	65
19,863	≮10	₹20	15
19.864	< 10	< 20	25
19,865	< 10	30	60
19.866	< 10	30	50
19.867	15	30	50
19.868	10	20	90
19,869	10	30	100
19.870	10	30	85
19.871	< 10	20	15
19.872	≤10	< 20	10
19.873	10	20	35
19.874	< 10	30	30
19.875	<10	20	140
19.876	< 10	20	40
19.877	280	₹20	220
19,878	< 10	20	100
19,879	< 10	20	30
19,880	< 10	30	150
19,881	< 10	20	100
19,882	⊲10	₹ 20	45
19,883	NC) SAMPLE	
19,884	<10	40	50
19,885	⊲ 10	40	170
19,886	∢10	40	110
19,887	< 10	30	370
19,888	< 10	20	330
19,889	∢10	40	110
19,890	< 10	30	240
19,891	< 10	30	380
19,892	15	30	320
19,893	< 10	30	120
19,894	< 10	◄ 20	300
19,895	< 10	20	170
19,896	< 10	30	120

Sample No.	Cu ppm	Pb ppm	Zn ppm
19,897	≺ 10	20	110
19,898	≤ 10	< 20	20
19,899	< 10	30	50
19,900-	< <u>10</u>	خ 20	15
19,901	< 10	< 20	20
19,902	10	30	85
19,903	< 10	30	55
19,904	15	60	70
19,905	≺ 10	< 20	20
19,906	≺ 10	40	100
19,907	< 10	50	100
19,908	< 10	₹ 20	15
19,909	< 10	30	110
19,910	≤ 10	₹ 20	20
19,911	∢ 10	30	60
19,912	< 10	₹ 20	75
19,913	< 10	20	60
19,914	≤ 10	< 20	45
19,915	< 10	≺ 20	20
19,916	`< <u>10</u>	40	60
19,917	< 10 <	₹ 20	30
19,918	< 10	40	40
19,919	< <u>10</u>	20	55
19,920	< 10	₹ 20	40
19,921	< 10	< 20 [−]	20
19,922	< 10	< 20	10
19,923	15	40	210 -
19,924	< 10	40	40
19,925	< 10	30	25
19,926	< 10	₹ 20	15
19,927	< 10	< 20	15
19,928	< 10	< 20 <	25
19,929	< 10	< 20	10
19,930	< 10	< 20	10
19,931	10	₹ 20	40
19,932	< 10	< 20 ×	30
19,933	< <u>10</u>	< 20	40
19,934	< 10	< 20 <	80
19,935	10	40	180
19,936	< 10	30	160
19,937	10	30	170
19,938	10	30	200
19,939	20	30	180
19,940	10	20	130
19,941	< 10	30	· 40
19,942	10	40	85
19,943	< 10	20	40
19,944	< 10	30	60
19,945	< <u>10</u>	20	60
19,946	10	330	100
19,947	< <u>10</u>	380	160
19,948	< 10	110	80

Sample No.	Cu ppm	Pb ppm	Zn ppm
19,949	< 10	20 ·	440
19,950	10	20	55
19,951	15	< 20	35
19,952	∢ 10	₹ 20	10
19,953	35	30	55
19,954	20	< 20	55
19,955	10	₹ 20	25
19,956	< 10	30	65
19,957	< 10	30	40
19,958	< 10	30	35
19,959	< 10	< 20	15
19,960	< 10	40	65
19,961	< 10	50	50
19,962	10	40	65
19,963	10	40	85
19,964	< 10	30	100
19,965	30	30	3 30
19,966	15	< 20	90
19,967	10	₹ 20	30
19,968	20	₹ 20	45
19,969	10	30	35
19,970	10	₹ 20	20
19,971	< 10	₹ 20	20
19,972	< 10	< 20	45
19,973	< 10	30	130
19,974	< 10	₹ 20	20
19,975	< 10	₹ 20	215
19,976	< 10	20	190
19,977	10	40	300
19,979	< 10	₹ 20	60
19,980	< 10	₹ 20	40
19,981	10	₹ 20	40
19,982	10	20	70
19,983	< 10	₹ 20	20
19,984	< 10	₹ 20	40
19,985	< 10	₹ 20	40
19,986	< 10	₹ 20	40
19,987	≤ 10	₹ 20	15
19,988	< 10	₹ 20	75
19,989	< 10	₹ 20	25
19,990	< 10	₹ 20	60
19,991	< 10	₹ 20	45
19,992	< 10	₹ 20	35
19,993	< 10	< 20	35
19,994	∢ 10	₹ 20	50
19,995	< 10	< 20	50
19,996	< 10	ج 20	40
19,997	< 10	< 20	35
19,998	< 10	₹ 20	60

	S	Sample N	lo.		Cu	ppm		P	b ppm		Zn	ppm
NOTE:	Samples	19,999	to 20),129	are	from	the	Upper	Glen	Cassley	Are	a.
		19,999)		. ک	10			20		6	0
		20,000)		4	10			30		11	0
		20.001	L		4	10			50		11	0
		20,002	2		< ۲	10		<	20		3	0
		20,003	3		<	10			20		4	0
		20,004	4		4	10		<	20		6	5
		20,005	5		< ۲	10			20		7	0
		20,006	5			10			40		7	5
		20,007	7			10			50		14	0
		20,008	3		 	10			20		3	0
		20,009	•		•	10			30			50
		20,010)			10			50		12	20
		20,011	L			10			30		e	50
		20,012	2			10			40		8	3 0
		20,013	3			10			30		e	60
		20,014	ł			15			60		15	50
		20,015	5		•	15			50		15	50
		20,016	,			15			60		16	50
		20,01/				10			50		16	50
		20,018	5			10			60 50		15	50
		20,019	,			15			50		1/	0
		20,020)			20			60 70		12	20
		20,021	•			90 1 E			70		1.	30
		20,022				20			50		10	0
		20,023				20			20		1/	10 20
		20,024	F L		•	25			40		14	10 00
		20,022	5			10			30		14	20
		20,027	,			20			60		1/	10
		20.028	3			10			40		12	•0 •0
		20.029)			10			50		16	50
		20,030)			10			40		16	50
		20,031	L			10			40		15	50
		20,032	2			10			40		18	30
		20,033	3			10			50		e	55
		20,034	F .			10			50		16	50
		20,035	5		4	10			60		17	0
		20,036	,		4	10			40		16	50
		20,037	,			10			30		17	0'
		20,038	3			15			50		17	0'0
		20,039	}			10			20		34	ŧ0
		20,040)			10			30		7	70
		20,041	L		4	10			40		6	50
		20,042	2			10			20		ç	90
		20,043	3			10			30		4	40
		20,044	+ -		4	10		<	20		1	10
		20,04)			10		<	• 20		2	10
		20,046	,		~	10			40		39	90
		20,047	, 		4	10		<	• 20		1.	30
		ZU, U48	2		7	TO			40		- 10)0

Sample No.	Cu ppm	Pb ppm	Zn ppm
20,049	< 10	60	120
20,050	10	40	80
20,051	< 10	₹ 20	200
20,052	10	20	200
20,053	10	30	500
20,054	10	40	170
20,055	15	90	500
20,056	10	40	320
20,057	20	20	50
20,058	20	30	50
20,059	10	20	40
20,060	10	20	40
20,061	10	< 20	110
20,062	< 10	20	80
20,063	10	30	150
20,064	10	30	130
20,065	10	30	70
20,066	10	30	90
20,067	, 10	30	120
20,068	10	40	120
20,069	15	20	200
20,070	10	30	90
20,071	10	₹ 20	220
20,072	< 10	20	160
20,073	< 10	< 20	140
20,074	< 10	< 20	130
20,075	10	20	70
20,076	10	< 20	90
20,077	10	20	70
20,078	15	30	80
20,079	10	20	100
20,080	10	20	150
20,081	< 10	< 20	120
20,082	< 10	20	180
20,083	10	30	180
20,084	10	30	110
20,085	≤ 10	< 20	110
20,086	< 10	40	100
20,087	< 10	40	110
20 ,0 88	10	50	100
20,089	10	20	130
20,090	10	20	190
20,091	< 10	20	300
20,092	< 10	< 20	80
20,093	10	< 20	90
20,094	< 10	< 20	40
20,095	< 10	< 20	90
20,116	10	30	170
20,117	10	< 20	230
20,118	10	50	260
20,119	15	30	200

Sample No.	Cu ppm	Pb ppm	Zn ppm
20,120	10	20	75
20,121	< 10	< 20	60
20,122	10	30	230
20,123	10	30	200
20,124	10	20	60
20,124	15	20 '20	150
20,123	10	20	10
20,120	10	30	70
20,127	→ 10 10	20	6U 00
20,128	10	< 20 < 00	90
20,129	10	₹ 20	10
20,361	15	20	70
20,362	20	< 20	100
20,363	25	20	110
20,364	15	20	90
20,365	20	< 20	90
20,366	85	60	160
20,367	30	30	220
20,368	. 45	40	210
20,369	` 60	40	170
20,370	45	30	150
20,371	10	30	80
20.372	15	20	80
20.373	20	30	60
20.374	15	< 20	65
20.375	20	₹ 20	75
20,376	15	20	40
20,377	< 10	20	30
20,378	< 10	20	50
20,379	55	20	100
20,380	10	< 20	75
20,381	75	20	150
20,301	70	30	1.50
20,302	70	20	45
20,303	80 10	20	50
20,304	10	30	70
20,305	33 - 10	20	60
20,300	× 10 10	40	70
20,387	10	40	80
20,388	10	30	190
20,389	25	30	120
20,390	10	~ 20	60
20,391	10	30	70
20,392	10	< 20	80
20,393	10	30	80
20,394	10	20	120
20,395	35	60	80
20,396	10	30	90
20,397	10	20	160
20,398	10	70	150
20,399	15	50	110
20,400	10	20	340
20,405	10	60	130

Sample No.	Cu ppm	Pb ppm	Zn ppm
20,406	10	< 20	80
20,407	15	40	100
20,408	15	20	50
20,409	20	110	110
20,410	10	40	60
20,411	25	80	70
20,412	10	< 20	340
20,413	20	30	110
20,414	20	20	100
20,415	20	20	100
20,416	15	50	140
20,417	25	30	110
20,413	15	40	60
20,419	20	40	100
20,420	15	70	60
20,421	20	60	120
20,422	30	110	160
20,423	10	< 20	30
20,424	15	< 20	60
20,425	20	< 20	100
20,426	20	< ² 0	100
20.427	25	< 20	100
20,428	20	< 20	100
20,429	20	20	100
20,430	30	90	230
20,431	25	70	230
20,432	25	50	200
20,433	10	60	120
20,434	20	60	70
20,435	15	ح 20	110
20,436	15	20	90
20,437	20	20	140
20,439	15	20	160
20,440	25	20	150
20,441	20	₹ 20	70
20,442	20	< 20	160
20,443	35	40	90
20,444	20	30	120
20,445	15	< 20	120
20,446	25	≤ 20	180
20,447	10	2 0	110
20,448	20	20	80
20,449	15	2 0	150
20,450	20	20	240
20,451	25	→ 20	340
20,452	20	20	100
20,453	15	20	130
20,454	10	~ 20	100
20,455	20	20	340
20,456	25	60	240
20,457	10	40	130
20,458	15	30	190

.

Sample No.	Cu ppm	Pb ppm	Zn ppm
20,459	15	40	120
20,460	15	20	90
20,461	15	< 20	60
20,462	10	₹ 20	70
20,463	10	₹ 20	90
20,464	15	20	70
20,465	25	50	120
20,466	15	30	90
20,467	25	30	110
20,468	15	e 20	70
20,469	15	₹ 20	130
20,470	50	60	220
20,471	15	- 20	80
20,472	10	₹ 20	70
20,473	10	20	60
20,474	10	20	50
20,475	15	30	130
20,475	10	20	170
20,470	10	30	70
20,477	+0 15	30	150
20,470	15	30	120
20,475	10	< 20 + 20	120
20,480	10	< 20	40
20,401	10	₹ 20 + 20	50
20,402	< 10 10	< 20 + 20	120
20,403	10	< 20 x 20	130
20,404	10	< 20 50	00
20,405	10	20	0U
20,400	10	30	80
20,407	40	20	90
20,400	10	30	50
20,409	10	20	30
20,490	10	20	20
20,491	10	< 20 20	60 50
20,492	10	20	50
20,493	< 10 10	20	40
20,494	10	20	40
20,495	10	< 20	40
20,490	10	20	70
20,497	< 10 10	20	30
20,490	10	20	15
20,499	10	₹20	20
20,500	C1	₹20	20
20,030	90	20	120
20,037	10	30	20
20,030	20	30	60
20,039	75	50	140
20,040	20	50	30
20,041	25	60	120
20,642	60	20	50
20,643	100	30	80
20,644	60	30	90
20,645	15	60	50

.

Sample No.	Cu ppm	Pb ppm	Zn ppm
20,646	25	100	150
20,647	15	30	70
20,648	25	100	150
20,654	15	50	100
20,655	15	30	200
20,656	10	20	60
20,657	20	20	110
20,658	20	50	80
20,659	15	40	140
20,660	15	30	360
20,661	15	40	80
20,662	15	40	70
20,663	15	30	140
20,664	15	20	200
20,665	25	30	90
20,666	20	30	70
20.667	15	20	30
20,668	20	20	100
20,669	25	20	190
20,670	35	20	320
20,671	INSUFFICIENT	SAMPLE	•=•
20,672	20	30	40
20.673	20	80	80
20,674	20	40	30
20,675	20	50	90
20,676	15	20	30
20,677	25	80	80
20,678	30	50	130
20,679	10	30	80
20,680	10	30	40
20,681	15	20	100
20,682	15	30	250
20,683	10	30	2.00
20,684	10	20	10
20,685	25	30	100
20,686	20	30	80
20,687	30	20 70	00
20,688	25	30	70
20,689	20	30	80
20,690	10	50	100
20,691	10	60	110
20,692	25	80	120
20,693	15	< 20	120
20,694	15	20	160
20,695	15	20 ∢ 20	100
20,696	15	< 20 < 20	110
20,697	15	20	50
20,698	15	₹ 20	3/.0
20,699	15	₹ 20	210
20,700	15	20	220
			~~~~

	Sample No.	Cu ppm	Pb ppm	Zn ppm
2.	Auger Samples			
	20,137 20,138 20,139 20,140 20,141 20,142	<pre>&lt; 10 &lt; 10</pre>	20 20 20 20 50 20	10 10 15 10 10 10
	20,143	< 10	20	10
	20,144	< 10	20	10
	19,700	10	30	20
	19,701	∢ 10	20	20
	19,702	10	20	10
	19,703	10	20	15
	19,704	50	20	100
	19,705	< 10	20	10
	19,706	< 10	20	10
	19,707	20	20	30
	19,708	10	20	25
	19,709	15	20	15
	19,710	10	30	20
	19,711	10	20	10
	19,712	15	20	15
	19,713	10	30	15
	19,714	25	20	25
	19,715	15	60	30
	19,716	10	20	25
	19,717	10	20	10
	19,718	10	20	10
	19,719	15	20	10
	19,720	25	20	10
	19,721	20	60	70
	19,722 19,723 19,724 19,725	25 15 25	50 30	55 30
	19,726 19,727 19,728	10 25 30	20 20 20 20	50 15 20 45
	19,729	30	20	40
	19,730	15	30	40
	19,731	45	50	7 5
	19,732	25	150	120
	19,733	10	30	80
	19,734	20	20	70
	19,758 19,759 19,760	30 15 20	<ul> <li>✓ 20</li> <li>✓ 20</li> <li>✓ 20</li> <li>✓ 20</li> </ul>	7 5 30 50
	19,761	35	< 20	55
	19,762	15	< 20	35
	19,763	10	< 20	60

## <u>APPENDIX 1</u> Continued

# 3. <u>Chip Samples</u>

Sample No.	<u>Cu ppm</u>	Pb ppm	Zn ppm
20,592	15	< 20	20
20,593	10	< 20	20
20,594	25	< 20	10
20,595	20	30	40
20,596	15	< 20	20
20, 597	10	20	20
20,598	15	< 20	20
20,599	15	< 20	10
20,600	20	< 20	30
20,627	35	20	60
20,628	15	. 30	30
20,629	25	240	20
20,630	15	1600	40
20,631	10	20	50
20,632	10	<b>&lt;</b> 20	10
20,633	20	< 20	20
20,634	15	20	< 10
20,635	15	< 20	40

#### APPENDIX 2

SPECTROGRAPHIC ANALYSES OF SELECTED SAMPLES FROM AREAS 2 AND 3

Sample	Grid Reference	Mo ppm	W ppm	Sn ppm	Ni ppm	Co ppm	Cr ppm	Ag ppm	Bi ppm	V ppm	Ba %	Mn %	Ti %
19100)	523067	5	<50	<5	10	5	50	<1	<5	50	0.05	1.0	0.1
19101 )	525007	12	<50	<5	30	10	100	<1	<5	100	0.1	1.0	0.3
19103	522068	7	<50	<5	10	10	100	<1	<5	100	0.1	1.5	0.2
19104	51907 <u>0</u>	10	<50	≮5	30	10	100	<1	<5	150	<0.05	0.1	0.4
19108	516076	4	<50	15	15	15	100	<1	<5	50	0.2	5 approx	0.2
19113	535065	3	<50	5	10	5	100	<1	<5	30	0.1	<b>2.</b> 5 ·	0.1
19116 )	529055	5	<50	<5	5	5	100	<1	<5	30	<0.05	1.0	0.1
19117 )		20	<50	<5	15	20	100	<1	<5	70	0.1	1.5	0.3
19119	526055	15	<50	<5 [.]	15	12	200	<u>&lt;1</u>	<5	70	0.1	1.5	0.3
19121	522055	12	<50	<5	10	7	200	<1	<5	50	<0.05	0.3	0.2
19124	521055	50	<50	<5	40	12	100	<1	<5	50	0.5	0.2	0.3
19126	514054	801	<50	<5	50	40	200	<1	<5	100	0.2	1.0	0.4
19127	<b>5</b> 18054	60	<50	<5	25	30	100	<1	<5	70	0.1	1.0	0.4
19129	515052	.90	<50	20	35	45	100	<1	<5	50	0.1	4.0	0.2
<b>191</b> 30 - )	513051	25	<50	5	15	12	50	<1	<5	30	0.1	2.0	0.2
₁₉₁₃₁ )	515051	25	<50	<5	10	10	50	<1	<5	30	0.1	2.0	0.2
19132	517054	20	<50	<5	10	10	50	<1	<5	30	0.1	1.0	0.2
19133	518056	35	<50	10	20	20	100	<1	<5	30	0.2	3.0	0.2
19164	515058	15	<50	<5	10	10	100	<1	<5	30	0.2	1.5	0.2
19165	512059	2	<50	<5	5	5	50	<1	<5	50	<0.05	0.5	0.1

Şample	Grid Reference	Mo ppm	W ppm	Sn ppm	Ni ppm	Co ppm	Cr ppm	Ag ppm	Bi ppm	V ppm	Ba %	Mn 🗶	Ti %
*19693		<2	<50	5	25	15	150	<1	<5	200	<0.05	0.1	1.0
<b>*19</b> 694		<2	<50	15	25	15	150	<1	<5	300	<0.05	0.2	1.0
<b>*</b> 19695	CONTROL.	9	<50	20	25	25	150	<1	<5	200	0.1	0.1	0.7
<b>*1</b> 969 <mark>6</mark>	SAMPLES	<2	<50	<5	100	<5	>>1000	2	<5	50	<0.05	0.01	<0.1
*19697		3	<50	<5	20	5	200	30	<5	50	<0.05	0.2	0.2
<b>*</b> 19698		3	<50	<5	20	15	200	2	<5	30	<0.05	0.05	<0.1
*19699		1000	<50	<5	40	10	100	1	<5	·70	<0.05	0.05	1.0
19704	533041	<2	<50	<5	30	7	300	<1	<5	100	<0.05	0.05	0.5
19722	478026	<2	<50	<5	40	30	300	<1	<5	150	<0.05	0.2	1.0
19732	478029	<2	<50	.<5	25	10	300	<1	<5	100	0.05	0.05	1.0
19733	479029	2	<50	<5	<5	<5	100	<1	<5	70	<0.05	0.05	0.4
19750		6	<50	<5	15	15	150	<1	<5	70	0.5	2.0	0.4
19753	513018	7	<50	<5	10	10	100	<1	<5	70	>1	0.5	0.5
19754	514018	15	<50	<5	15	10	100	<1	<5	70	>1	0.5	0.5
19755)		2	<50	<5	15	15	100	<1	<5	70	0.1	1.0	0.5
19756)	504015	2	<50	<5	10	7	100	<1	<5	50	0.2	0.5	0.5
<b>1</b> 9757		4	<50	<5	25	15	100	<1	<5	70	0.1	1.5	0.5
20352)	535025	15	<50	<5	25	15	300	<1	<5	70	0.1	1.5	0.5
20363 ⁾		15 <del>-</del>	<50	<5	35	15	200	<1	<5	100	0.05	0.1	0.5
20366	531027	7	<50	5	40	20	300	<1	<5	100	0.2	0.2	0.5

*NOTE: Control samples are taken from outwith the Rosehall Area

Sample	Grid Reference	Mo ppm	W ppm	Sn ppm	Ni ppm	Co ppm	Cr ppm	Ag ppm	Bi ppm	V ppm	Ba %	Mn 🔏	Ti %
20367	529030	10	<50	<5	30	40	300	<1	<5	70	0.1	3.0	0.2
20368		12	<50	<5	30	25	300	<1	<5	70	0.05	3.0	0.2
20369)	528032	17	<50	<5	90	15	400	<1	<5	100	<0.05	3.0	0.5
20370 <b>)</b>		20	<50	<5	25	15	100	<1	<5	70	0.1	2.5	0.2
20371)	526035	12	<50	<5	15	15	50	<1	<5	70	<0.05	0.5	0.2
20372)		15	<50	<5	10	10	50	<1	<5	50	0.05	0.5	0.3
20379	529035	10	<50	<5	10	20	50	<1	<5	50	0.1	1.0	0.3
<b>2</b> 0381	529037	10	<50	<5	100	50	200	<1	<5	100	<0.05	0.2	1.0
²⁰³⁸⁷ )	522018	2	<50	<5	5	<5	50	<1	<5	40	<0.05	0.2	0.2
₂₀₃₈₈ )		2	<50	<5	5	5	50	.<1	<5	50	0.1	0.7	0.3
20389	524019	2	<50	<5	10	<5	50	<1	<5	50	<0.05	0.5	0.5
²⁰³⁹² )		3	<50	<5	10	7	50	<1	<5	70	0.1	0.5	0.7
20393)	518020	10	<50	<5	10	7	50	<1	<5	70	0.1	0.3	0.5
20394		4	<50	<5	10	10	50	<1	<5	70	0.1	1.0	0.5
20395	517020	7	<50	<5	10	15	50	<1	<5	50	0.1	0.2	0.4
20396		8	<50	<5	10	10	70	<1	<5	70	0.1	0.3	0.5
20397	<b>5</b> 17021	4	<50	<5	15	10	70	<1	<5	70	0.1	0.3	0.5
20398	520021	5	<50	<5	5	7	100	<1	<5	50	0.05	0.4	0.3
20399)	521023	12	<50	<5	10	15	100	<1	<5	7 <u>0</u>	0.1	0.3	0.5
20400 )	<i>~~~~~</i>	10	<50	<5	10	25	100	<1	<5	50	0.1	1.0	0.3

Sample	Grid Reference	Mo ppm	W ppm	Sn ppm	Ni ppm	Co ppm	Cr ppm	Ag ppm	Bi ppm	V ppm	Ba %	Mn 🕇	Ti <b>%</b>
<b>2</b> 0405	521023	10	<50	<5	10	10	100	<1	<5	50	0.05	0.4	0.3
20406	521025	12	<50	<5	5	5	70	<1	<5	30	<0.05	0.2	0.2
20407)	510025	15	<50	<5	10	5	70	<1	<5	40	0.05	0.2	0.3
20409 <b>)</b>	319025	15	<50	<5	5	10	70	<1	<5	30	0.05	0.7	0.3
20412		3	<50	<5	10	15	50	<1	<5	20	0.2	2.0	0.2
20413)	50516	3	<50	<5	10	10	70	<1	<5	70	0.3	0.3	0.5
20414 <b>)</b>		2	<50	<5	15	10	70 🖌	<1	<5	70	0.2	0.2	0.7
20415	506020	<2	<50	30	10	<5	70	<1	<5	<b>7</b> 0 [.]	0.1	0.1	0.5
20416	503017	<2	<50	10	10	10	70	<1	<5	50	0.1	0.3	0.5
20417	502017	<2	<50	<5	30	15	100	<1	<5	50	0.1	0.3	·0.5
20419	469032	<2	<50	<5	20	15	70	<1	<5	50	0.1	0.2	0.5
20421	475025	<2	<50	<5	20	15	100	<1	<5	50	0.2	0.3	0.5
20422	480019	<2	<50	10	5	5	50	<1	<5	40	0.05	0.1	0.4
20425)	478025	<2	<50	<5	30	10	100	<1	<5	50	0.1	0.1	0.5
20426 <b>)</b>	470025	<2	<50	<5	20	10	100	<1	<5	40	0.1	0.3	0.3
20427	480025	<2	<50	<5	20	10	70	<1	<5	40	0.1	0.3	0.4
20428	482025	<2	<50	<5	20	15	70	<1	<5	40	0.1	0.3	0.4
20429	482026	<2	<50	<5	20	15	70	<1	<5	40	0.1	0.3	0.4
20430	478027	<2	<50	<5	40	20	100	<1	<5	40	0.1	1.0	0.4
20431	471029	<2	<50	<5	30	20	100	<1	<5	40	0.1	1.0	0.4

Sample	Grid Reference	Mo ppm	W ppm	Sn ppm	Ni ppm	Co ppm	Cr ppm	Ag ppm	Bi ppm	V ppm	Ba %	Mn 🗶	Ti <b>%</b>
20405	521023	10	<50	<5	10	10	100	<1	<5	50	0.05	0.4	0.3
20406	<b>52</b> 1025	12	<50	<5	5	5	70	<1	<5	30	<0.05	0.2	0.2
20407)	510025	15	<50	<5	10	5	70	<1	<5	40	0.05	0.2	0.3
20409 <b>)</b>	519025	15	<50	<5	5	10	70	<1	<5	30	0.05	0.7	0.3
20412		3	<50	<5	10	15	50	<1	<5	20	0.2	2.0	0.2
20413)	50516	3	<50	<5	10	10	70	<1	<5	70	0.3	0.3	0.5
₂₀₄₁₄ )		2	<50	<5	15	10	70	<1	<5	70	0.2	0.2	0.7
20415	50602 <u>0</u>	<2	<50	30	10	<5	70	<1	<5	<b>7</b> 0 [.]	0.1	0.1	0.5
20416	503017	<2	<50	10	10	10	70	<1	<5	50	0.1	0.3	0.5
26417	502017	<2	<50	<5	30	15	100	<1	<5	50	0.1	0.3	0.5
<b>2</b> 0419	469032	<2	<50	<5	20	15	70	<1	<5	50	0.1	0.2	0.5
20421	475025	<2	<50	<5	20	15	100	<1	<5	50	0.2	0.3	0.5
20422	480019	<2	<50	10	5	5	50	<1	<5	40	0.05	0.1	0.4
20425)	478025	<2	<50	<5	30	10	100	<1	<5	50	0.1	0.1	0.5
20426 <b>)</b>	470025	<2	<50	<5	20	10	100	<1	<5	40	0.1	0.3	0.3
20427	480025	<2	<50	<5	20	10	70	<1	<5	40	0.1	0.3	0.4
20428	482025	<2	<50	<5	20	15	70	<1	<5	40	0.1	0.3	0.4
20429	482026	<2	<50	<5	20	15	70	<1	<5	40	0.1	0.3	0.4
20430	478027	<2	<50	<5	40	20	100	<1	<5	40	0.1	1.0	0.4
20431	471029	<2	<50	<5	30	20	100	<1	<5	40	0.1	1.0	0.4

• Sample	Grid Reference	Мо ррт	W Ppm	Sn ppm	Ni ppm	Co ppm	Cr ppm	Ag ppm	Bi ppm	V ppm	Ba %	Mn 🔏	Ti %
20432	482031	<2	<50	<5	30	15	100	<1	<5	40	0.2	1.0	0.4
20433	472032	<2	<50	<5	10	15	70	<1	<5	40	0.1	0.5	0.3
20435	484035	<2	<50	<5	5	20	70	<1	<5	30	0.05	3.0	0.2
20436)	484034	<2	<50	<5	5	10	50	<1	<5	30	0.05	2.0	0.3
20437 <b>)</b>		<2	<50	<5	5	10	70	<1	<5	30	0.05	3.0	0.3
20439	476021	<2	<50	<5	10	15	70	<1	<5	40	0.1	1.5	0.3
20440	484015	<2	<50	50	10	5	70	<1	<5	30	0.05	0.2	0.3
<b>2</b> 0442	489008	<2	<50	<5	10	5	70	<1	<5	50	0.1	0.4	0.4
20443	494001	<2	<50	<5	10	5	70	<1	<5	50	0.05	0.1	0.4
20444	492018	<2	<50	<5	10	15	70	<1	<5	.50	0.1	0.5	0.4
20445	487016	<2	<50	<5	15	7	70	<1	<5	50	0.1	0.5	0.4
20446	518005	2	<50	<5	20	15	70	<1	<5	50	0.1	1.5	0.3
20447	518005	2	<50	<5	20	10	100	<1	<5	40	0.1	0.5	0.3
20448 <u>)</u>	487016	2	<50	<5	20	5	70	<1	<5	50	0.1	0.5	0.4
20449 <b>)</b>		<2	<50	<5	5	<5	80	<1	<5	40	0.05	0.5	0.3
20450	520002	2	<50	<b>&lt;</b> 5%	15	25	70	<1	<5	30	0.2	2.5	0.3
20451	520002	2	<50	<5	10	15	70	<1	<5	30	0.1	2.5	0.2
²⁰⁴⁵² )		<2	<50	<5	15	10	70	<1	<5	70	0.1	0.1	0.4
20453)	488018	<2	<50	<5	15	10	70	<1	<5	70	0.1	0.5	0.4
20454 [/]		<2	<50	<5	15	10	50	<1	<5	50	0.1	0.3	0.4

Sample	Grid Reference	Mo ppm	W ppm	Sn ppm	Ni ppm	Co ppm	Cr ppm	Ag ppm	Bi ppm	V ppm	Ba %	Mn 🗶	Ti %
20455	520002	<2	<50	<5	15	15	50	<1	<5	30	0.2	3.0	0.2
20456		2	<50	<5	40	25	70	<1	<5	50	0.3	2.0	0.4
20457)	522004	2	<50	<5	20	30	70	<1	<5	50	0.1	2.0	0.4
20458 <b>)</b>		2	<50	<5	30	40	70	<1	<5	40	0.2	2.0	0.3
20459	575990	<2	<50	<5	40	15	70	<1	<5	40	0.05	0.2	0.4
20460	575988	<2	<50	<5	50	10	100	<1	<5	40	0.1	0.3	0.4
20463	554985	<2	<50	15	20	15	50	<1	<5	40	0.1	0.7	0.4
20465)		2	<50	<5	40	15	70	<1	<5	40	0.1	0.5	0.4
20466)	542993	<2.	<50	<5	40	10	70	<1	<5	40	0.05	0.1	0.4
20467 <b>)</b>		<2	<50	<5	40	10	70	<1	<5	40	0.05	0.2	·0.4
20469	545996	2	<50	<5	40	10	70	<1	<5	50	0.1	0.7	0.5
20470	522998	2	<50	<5	30	15	70	<1	<5	50	0.1	0.5	0.4
20471	489007	<2	<50	<5	30	5	50	<1	<5	40	0.05	0.1	0.4
20475	481012	<2	<50	150	40	10	70	<1	<5	50	<0.05	0.2	0.5
20476	478015	<2	<50	<5	20	15	50	<1	<5	40	0.05	0.2	0.4
20478)		<2	<50	<5	20	15	70	<1	<5	40	0.05	0.2	0.5
20479	473020	2	<50	<5	20	20	70	<1	<5	50	0.05 [.]	1.0	0.5
20483		3	<50	<5	10	25	70	<1	<5	20	0.05	3.0	0.2
20484)	484046	<2	<50	<5	5	15	50	<1	<5	30	<0.05	2.5	0.2
20485		<2	<50	5	10	10	50	<1	<5	30	0.05	2.5	0.3

Sample	Grid Reference	Mo ppm	W ppm	Sn ppm	Ni ppm	Co ppm	Cr ppm	Ag ppm	Bi ppm	V ppm	Ba %	Mn %	Ti %
20486	488062	2	<50	<5	<5	15	50	<1	<5	<20	<0.05	0.5	<0.1
20487	489062	2	<50	<5	15	5	70	<1	<5	40	0.05	0.3	0.3
20636	529034	15	<50	<5	100	30	200	<1	<5	100	0.05	0.5	0.4
20639	529035	12	<50	<5	100	25	300	<1	<5	100	0.05	0.5	0.5
20541	514045	40	<50	<5	20	30	70	<1	<5	30	0.05	1.0	0.2
20643	516050	40	<50	<5	30	30	100	<1	<5	40	0.05	0.1	0.5
20544	520054	40	<50	<5	30	20	100	<1	<5	40	0.2	0.3	0.4
20646	477026	<2	<50	<5	30	20	100	<1	<5	40	>1	1.0	0.5
20648	477026	<2	<50	<5	30	20	100	<1	· <5	40	0.2	0.7	0.5
<b>*2</b> 0649		<2	<50	<5	80	<5	>>1000	1	<5	50	<0.05	0.05	<0.1
<b>*2</b> 0650	CONTROL	5	<50	<5	20	7	200	<b>3</b> 5	<5	40	<0.05	0.2	0.2
<b>*2</b> 0652	SAMPLES	5	<50	<5	15	15	200	1	<5	30	<0.05	0.1	<0.1
*20653		1000	<50	<5	30	10	200	1	<5	50	<0.05	0.1	0.5
20654	495035	2	<50	<5	20	20	100	1	<5	50	0.05	0.7	0.4
20655)		2	<50	<5	5	10	70	<1	<5	30	0.1	2.0	0.3
20657)	496028	2	<50	<5	10	10	70	<1	<5	50	0.1	1.0	0.3
<b>2</b> 0658		2	<50	<5	10	10	70	<1	<5	40	0.05	0.7	0.3
20659	501025	2	<50	<5	5	15	50	<1	<5	30	0.1	2.0	0.2
<b>2</b> 0660	490029	2	<50	10	30	15	100	<1	<5	50	0.1	1.5	0.4
20661	497027	2	<50	<5	15	15	100	<1	<5	40	0.1	1.0	0.4

*NOTE: Control samples are taken from outwith the Rosehall Area

Serple	Grid Reference	Mo ppm	W ppm	Sn ppm	Ni ppm	Co ppm	Cr ppm	Ag ppm	Bi ppm	V ppm	Ba %	Mn <b>%</b>	Ti %
20663)	499026	2	<50	<5	15	10	70	<1	<5	40	0.2	2.0	0.3
20664 <b>)</b>		2	<50	<5	5	5	70	<1	<5	20	0.1	2.0	0.2
20665	537051	15	<50	⁻ <5	20	15	100	<1	<5	50	0.1	1.0	0.4
20668)	533053	2	<50	<5	5	5	50	<1	<5	30	<0.05	0.3	0.3
20669 <b>)</b>		3	<50	<5	30	25	200	<1	<5	50	<0.05	1.0	0.3
20670	534054	_10	<50	<5	30	10	100	<1	<5	30	0.05	1.5	0.2
20673	528062	5	<50	<5	10	15	100	<1	<5	40	0.1	0.7	0.2
20675	527064	7	<50	<5	10	10	100	<1	<5	50	0.05	0.5	0.2
20677)	524066	3	<50	<5	30	15	100	<1	<5	<b>7</b> 0	0.1	0.3	0.4
20678 <b>)</b>		2	<50	<5	10	10	50	<1	<5	30	0.05	1.0	0.2
<b>2</b> 0679	523066	3	<50	<5	10	10	100	<1	<5	50	0.1	0.2	0.3
20681	502069	<2	<50	-<5	5	10	70	<1	<5	40	0.05	0.1	0.3
20682	502068	<2	<50	<5	5	<5	50	<1	<5	40	0.1	0.05	0.4
20685	493061	4	<50	<5	30	30	70	<1	<5	50	0.1	1.0	0.4
20686)	493058	2	<50	<5	10	15	70	<1	<5	50	0.05	0.5	0.3
20687)		2	<50	<5	10	10	70	<1	<5	40	0.05	0.4	0.3
20689	492058	2	<50	<5	10	10	70	<1	<5	40	0.05	0.5	0.3
20690	491039	2	<50	5	5	<5	70	<1	<5	40	0.05	0.1	0.2
20691)	493045	2	<50	5	5	15	70	<1	<5	50	0.05	0.4	0.2
20692)		2	<50	<5	10	10	70	<1	<5	50	0.05	0.3	0.2

Sample	Grid Reference	Mo	W maa	Sn DDM	Ni	Co ppm	Cr ppm	Ag DDM	Bi ppm	V DDM	Ba %	Mn %	11 %
		P P	F F	P P	F F	E E	F F	<i></i>	FF	<b>F I</b>			
20693	493045	-2	<50	<5	10	10	50	<1	<5	40	0.1	0.7	0.2
20694	493041	·2	<50	<5	5	15	70	<1	<5	30	0.05	0.7	0.2
20695	496039	·2	<50	<5	20	15	70	<1	<5	30	0.1	0.7	0.2
20696	498038	2	<50	<5	5	15	70	<1	<5	40	0.1	1.0	0.2
20698)		-3	<50	<5	20	10	50	<1	<5	40	0.1	2.5	0.2
20699)	495035	·2	<50	<5	5	10	50	<1	<5	30	0.1	1.5	0.2
20700		-3	<50	<5	10	20	70	<1	<5	30	0.1	3.0	0.2






























# GEOPHYSICAL PROFILES ALONG TRAVERSE I



SUMMARY OF MAJOR GEOCHEMICAL ANDMALY GROUPINGS IN Cu, Pb, AND Zn



ROSEHALL GEOCHEMICAL SURVEY

		SCAL	E   º	0,000			
METRES 200	0	200	400	600	800	1000 METRES	
YARDS 200	0	200	400	600	800 (1	JOO YARDS	
X		TOPOGR	APHICAL	LEGEND			
			ROADS				
	beel		Tk Tk	<b>*</b> 1	3	Poin .	
	K000	Whére unf	enced shown by :	ecked (Ines		Poth	
			RAILWAYS	, )			
Multiple tr	Multiple track 🚥		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			entite entite and the entited	
Chapteril payer - Shale to	~k			Rood   Rood	Levi	aud [[ ][]]	
Siding, tri line	amwdy or mineral	, Koc	nd under			Foot Foot Dridge	
Norrow g	q n d e		+++		<b>Ŷ····- ∤ ···-</b> } }		
			VEGETATION	à			
Brocken	า า	Marsh		<u></u>	Scrub	0 a	
Rough grassland	**(TF(Y)	' Saltinge_	all the real $=$ after our we take our get yield by two the $\infty$ .	الم الم	Coppice_		
Heath	alle	Reeds	* 		Orchard	φ¢¢	
Cohi	fernis trees	* * *		Nan - appléarais		۵	
		\$41	SCELLANEC		11200-0.10 7		
Antiquity (Site of)	<b>ه ا</b>	Dunes	JULLEANLU		Chell a fuil-	وسيئت	
Bullding		Glasshouse				pit or quarty	
	00000	0/0381100389~			uravet pir		
Boulders	100000	Refuse or slog	heap		Sond pit		
·		Läke,loch or p	oond		Disused pit o	r quatry	
Electricity transmission line	,, Pole	Sloping mason	ry		Triangulation	polntA	
x	Direction	n of flow		Shingh	ł		
		of Boldt M		Sand			
			BOUNDARIE	s	*	· · · · · · · · · · · · · · · · · · ·	
	Geographical	County				ირიერილებით, დიიიკივილენ წინსერიტის წერინიწეთი	
The first appropriate symbol in this fist is shown when concidence of	Administration			*		(	
poundor(es occurs	Municipal Ba	Administrative County, County Borough or County of City			ოთავისის თხიერის ახიეთიდი	ر مسیوری میشوند ویسیو میشونه استانه در مسیوری	
Shown alternately with one of the	or District Co	onucij orđan ⁱ olban ol va	na orennon, og	ម្មេក	مرور والمرور و	سنه فرص بنها بدول دوله فره فرم منه الم	
symbols above when coincidence of boundaries occurs	Civil Parish s	howing change of i	mereing		FF	CP.	
Shawa only when not coircidental with other baundacics	Βοιουβή, Βυιά	h or County Const	stuency			, 	
		AE	BREVIATIO	VŞ			
Boundary Post or stone	BP,BS	Police Station~		Pol Sta	Telephone coll	bax Too	
Church	C h	Post Office		PO	Telephone coll	post roa	
Club House	СН	Public Convenié	anca	~~~~ PC	Guide post	GP	
Fire Engine Station	FE Sta	Public house		РН	Mile post	, Mi P	

Foot bridge FB	Sígnal þox	
Fountain Fa	Spring	Spr Well W
HEIGHTS	٠	ROCK FEATURES
Volues are given in feet above mean Newlyn	i sea tevel at	Vertical face
Surface heights determined by ground survey	y ~ , 21	
Bench mark and value	- » 8M 369 02	Loose rock Boulders Outgrop Scree

## STREAM SEDIMENT SAMPLES

PROBABLY ANOMALOUS VALUES
(WITH SAMPLE NUMBERS)
Others Copper Cu
Mo Molybdenum Lead Pb
Ba Basium Zinc
Zn

POSSIBLY	ANOMALOUS	VALUES
(WITH	SAMPLE NUMBE	RS
Othe Molybdenum	rs Coppe Lead	7 1 36
Barlu	m Zinc	

### BACKGROUND VALUES ONLY

### **@** 36|

Uncoloured segments also indicate background values

### <u>_QTHER</u> METALS

Anomalies for Manganese, Chromium, Nickel, Cobalt, Tin and Silver are detailed in the text

### ROCK CHIP SAMPLES & 720 (No anomalous values)

SHALLOW AUGER SAMPLES + 696

(No anomatous values)

SHEET INDEX

	,
Prepared for	
OYKEL MINERALS L	IMITED
Nocforlanas,	GPO, Box 48/7
Dowgqte Hill House,	Sydney,
.ondon EC4R 2SY	N.S.W 2001 /
	, Australia

NC3INE	NC4INW	NC4INE	,
NC3ISE	NC41SW	NCAISE	
NC 30NE	NC40NW	NC40NE	

ROBERTSO

### Ty'n - y - Coed';

-- -- ---

Llanrhos,

,

↓landudno '

### COMPILATION NOTE

Bosed upon Ordnance Survey sheet NC4ISW at 1.10,000 scale with the sanction of the Controller of H.M. Stationery Office

